If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6x2 + 11x + 35 = 0 Reorder the terms: 35 + 11x + 6x2 = 0 Solving 35 + 11x + 6x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 5.833333333 + 1.833333333x + x2 = 0 Move the constant term to the right: Add '-5.833333333' to each side of the equation. 5.833333333 + 1.833333333x + -5.833333333 + x2 = 0 + -5.833333333 Reorder the terms: 5.833333333 + -5.833333333 + 1.833333333x + x2 = 0 + -5.833333333 Combine like terms: 5.833333333 + -5.833333333 = 0.000000000 0.000000000 + 1.833333333x + x2 = 0 + -5.833333333 1.833333333x + x2 = 0 + -5.833333333 Combine like terms: 0 + -5.833333333 = -5.833333333 1.833333333x + x2 = -5.833333333 The x term is 1.833333333x. Take half its coefficient (0.9166666665). Square it (0.8402777775) and add it to both sides. Add '0.8402777775' to each side of the equation. 1.833333333x + 0.8402777775 + x2 = -5.833333333 + 0.8402777775 Reorder the terms: 0.8402777775 + 1.833333333x + x2 = -5.833333333 + 0.8402777775 Combine like terms: -5.833333333 + 0.8402777775 = -4.9930555555 0.8402777775 + 1.833333333x + x2 = -4.9930555555 Factor a perfect square on the left side: (x + 0.9166666665)(x + 0.9166666665) = -4.9930555555 Can't calculate square root of the right side. The solution to this equation could not be determined.
| p^2=0.81 | | 2+bg=11-3g | | 2x^2+8x-54=0 | | t^2=0.61 | | 9f=11 | | 10x+100(93-x)=2930 | | h=13.7t-4.9t | | 3(y-4)+y^2=y(y+3)-12 | | 3y+1=8y-3+2y | | 3x^2-4n-5=0 | | (3w-4)(3-w)=0 | | 8iz^3-1=0 | | 2x-3=(-13) | | 36x^2-42x+12.25=0 | | 4x=68+3x | | 93-63.99+100(93-63.99)=2930 | | 5d+7e+10d+9e= | | 2x^2(x+4)=3x^2+12x+20 | | 93-64.1+100(93-64.1)=2930 | | -5.1z=(-11.73) | | 3*(x+4)=3 | | 93-x+100(93-x)=2930 | | 4x=68+3(x-20) | | .8+.2(t-.6)=1.37 | | 11n-3=3n+37 | | -8+4=m-3 | | 2x-5x-15=-3x+7-15 | | 4x+3-3x=21 | | 16j-7j=9 | | 7w=4w-24 | | 62.99+64.99y=63.55 | | m^4-225=0 |